A semismooth Newton method for Tikhonov functionals with sparsity constraints
نویسندگان
چکیده
منابع مشابه
A Semismooth Newton Method for Tikhonov Functionals with Sparsity Constraints
Minimization problems in l for Tikhonov functionals with sparsity constraints are considered. Sparsity of the solution is ensured by a weighted l penalty term. The necessary and sufficient condition for optimality is shown to be slantly differentiable (Newton differentiable), hence a semismooth Newton method is applicable. Local superlinear convergence of this method is proved. Numerical exampl...
متن کاملSDPNAL \(+\) : a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints
Abstract In this paper, we present a majorized semismooth Newton-CG augmented Lagrangian method, called SDPNAL+, for semidefinite programming (SDP) with partial or full nonnegative constraints on the matrix variable. SDPNAL+ is a much enhanced version of SDPNAL introduced by Zhao et al. (SIAM J Optim 20:1737–1765, 2010) for solving generic SDPs. SDPNAL works very efficiently for nondegenerate S...
متن کاملA nonmonotone semismooth inexact Newton method
In this work we propose a variant of the inexact Newton method for the solution of semismooth nonlinear systems of equations. We introduce a nonmonotone scheme, which couples the inexact features with the nonmonotone strategies. For the nonmonotone scheme, we present the convergence theorems. Finally, we show how we can apply these strategies in the variational inequalities context and we prese...
متن کاملSemismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints
We consider a reformulation of mathematical programs with complementarity constraints, where by introducing an artificial variable the constraints are converted into equalities which are once but not twice differentiable. We show that the Lagrange optimality system of such a reformulation is semismooth and BD-regular at the solution under reasonable assumptions. Thus, fast local convergence can...
متن کاملA semismooth Newton method for tensor eigenvalue complementarity problem
In this paper, we consider the tensor eigenvalue complementarity problem which is closely related to the optimality conditions for polynomial optimization, as well as a class of differential inclusions with nonconvex processes. By introducing an NCP-function, we reformulate the tensor eigenvalue complementarity problem as a system of nonlinear equations. We show that this function is strongly s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2008
ISSN: 0266-5611,1361-6420
DOI: 10.1088/0266-5611/24/3/035007